
Environmental Impact on Predicting Olive Fruit Fly

Population Using Trap Measurements

Romanos Kalamatianos, Katia Kermanidis, Markos Avlonitis, Ioannis Karydis

Department of Informatics

Ionian University

Corfu, Greece 49100

{c14kala, kerman, avlon, karydis}@ionio.gr

Abstract. Olive fruit fly trap measurements are used as one of the indicators for ol-

ive grove infestation, and therefore, as a consultation tool on spraying parameters. In

this paper, machine learning techniques are used to predict the next olive fruit fly trap

measurement, given as input environmental parameters and knowledge of previous

trap measurements. Various classification algorithms are employed and applied to

different environmental settings, in extensive comparative experiments, in order to

detect the impact of the latter on olive fruit fly population prediction.

Keywords: olive fruit fly, machine learning, population prediction, classification,

Naive Bayes, Nearest Neighbors, Decision trees, Random forests, Support Vector

Machines

1 Introduction

The olive fruit fly is a pest that has been recorded to infest solely the olive fruits since at

least the third century BC [1]. Such infestations cause great damage to the production of

both olive oil or table olives [2] in many olive oil producing countries, including Greece.

The olive fruit fly is active during the summer and reaches its population peak during au-

tumn, while during the winter and in the first months of spring it hibernates, until environ-

mental conditions are favorable for it to reemerge [1].

The population growth of the olive fruit fly and, by extension, the level of infestation of

an olive grove are affected by various environmental factors. However, the two primary

factors that affect the activity of the olive fruit fly are temperature [3] and relative humidity

[4, 5].

Population control of the olive fruit fly can be achieved through spraying of the olive

trees, either with bait or universal [1][6]. However, in order for the spraying to have any

effect, it has to be applied when conditions are appropriate. Two factors indicate when

spraying should commence [6]: (a) the ripeness level of the olive fruit, as the fruit needs to

be ripe in order for it to be susceptible to the olive fruit fly and (b) the population of the fly,

i.e. when a certain population threshold (recorded via sampling) is exceeded. Sampling is

achieved through McPhail traps or yellow sticky traps [1][6]. The threshold is set to seven

olive fruit flies per trap per week during the summer and is decreased to five olive fruit

flies per trap per week during autumn [6].

Machine learning techniques have been used to detect oil spills on the surface of the sea

by scanning radar images [7], to automatically identify species by sound [8] and to monitor

flood protection systems [9]. Machine learning techniques have also been applied in nu-

merous agriculture processes such as the prediction of when a cow should be culled in a

dairy herd [10], the estimation of soil moisture [11], the estimation of a cow’s oestrus [12]

and the prediction of olive fruit fly infestation using information about olive tree health as

well as trap measurements [13].

The aim of this paper is to predict future olive fruit fly trap measurements, and by exten-

sion olive fruit fly infestations/outbreaks, using machine learning algorithms. Our approach

differentiates from previous work [13] by constructing a feature vector that consists of

environmental factors e.g. temperature, instead of the olive tree health, as well as trap

measurements.

2 Data Collection

2.1 Environmental Data

The data used in the experiments were collected from environmental sensors and olive fruit

fly traps that were installed at 16 locations on the north-western side of the island of Corfu,

Greece. Readings on the olive fruit fly traps show the total number of olive fruit flies

caught by the trap. Each reading was conducted every five days for the period from 10th

June 2015 to 29th September 2015, at all locations. All sensors at all locations logged tem-

perature values at a 15 minutes interval, while a few of these also logged relative humidity

values.

2.2 Feature Selection

In order to perform classification experiments, the aforementioned environmental data

were transformed into the following set of attributes (in order to represent readings as fea-

ture-value learning vectors):

 Mean temperature of the last five days before next trap reading

 Mean maximum temperature of the last five days before next trap reading

 Mean minimum temperature of the last five days before next trap reading

 Day 1 Mean Temperature

 Day 1 Maximum Temperature

 Day 1 Minimum Temperature

 Day 2 Mean Temperature

 Day 2 Maximum Temperature

 Day 2 Minimum Temperature

 Day 3 Mean Temperature

 Day 3 Maximum Temperature

 Day 3 Minimum Temperature

 Day 4 Mean Temperature

 Day 4 Maximum Temperature

 Day 4 Minimum Temperature

 Day 5 Mean Temperature

 Day 5 Maximum Temperature

 Day 5 Minimum Temperature

Apart from the environmental attributes, one more attribute, namely the trap measurement

of the last reading (number of flies caught), was used as input. All aforementioned attrib-

utes are numeric. Finally another attribute, denoting the next trap reading was used as the

classification class.

2.3 Feature Vector Extraction

The process of extracting the attributes for the feature vectors from the sensor data was

automated by use of a script. The script was written in Python that automatically computes

the mean, mean maximum and mean minimum temperature for the five day period before

the next trap reading, as well as the mean, maximum and minimum temperature for each

day in the aforementioned five day period. The script exports all vectors in a CSV (Comma

Separated Values) file. Finally trap readings are added manually at each corresponding

vector instance.

The temperature-related attributes, initially numeric, were discretized into the following

three bins:

 <15, temperature is lower than 15 oC,

 15 to 32, temperature is between 15 oC and 32 oC,

 >32, temperature is greater than 32 oC.

The discretization of the temperature values was based on the temperature range (between

15 oC and 32 oC [14]), in which the olive fruit fly is active. If the temperature of the envi-

ronment is below the lower or exceeds the upper threshold, then the olive fruit fly is mo-

tionless due to extreme cold or heat. Accordingly, herein we assume that outside the opti-

mal temperature range of the olive fruit fly, the traps will not capture any olive fruit flies.

Trap reading related attributes have also been discretized into the following bins:

 0 to 4, none or up to 4 olive fruit flies inside the trap,

 5 to 6, five or six olive fruit flies inside the trap,

 >=7, greater than or equal to seven olive fruit flies inside the trap.

The use of a ternary quantisation of the number of olive fruit flies is based on trap meas-

urements analysis, i.e. the infestation threshold depends on the season the measurements

are made. Specifically, in the summer months the infestation threshold is set to seven olive

fruit flies per trap per week. On the other hand, from September onwards the infestation

threshold is decreased to five olive fruit flies per trap per week, due to cooler weather [6].

Therefore, although the last bin value would always indicate infestation, the second bin

value would be depended on the season.

3 Machine Learning Algorithms

The WEKA machine learning workbench1 was used for running the classification experi-

ments. In the sequel, a number of classification algorithms that were selected for experi-

mentation are shortly presented.

J48 [15] is a decision tree induction algorithm and it is a version of C4.5, an earlier algo-

rithm developed by J. Ross Quinlan [16]. C4.5 generates a decision tree based on infor-

mation gain of the attributes in the available training data. More specifically, the attribute

whose values discriminate most clearly the training examples according to their class label

is identified in each iteration. The algorithm stops when there are no further attributes to

explore or when all the training examples are separated according to their class label. Addi-

tionally, J48 incorporates two tree pruning methodologies: The first one is known as sub-

tree replacement and it replaces a node in a decision tree with the corresponding leaf, if the

given subtree does not help classification accuracy. This pruning process starts from the

leaves of the fully formed tree, and moves bottom up toward the root. The second method-

ology is known as subtree raising in which a node may replace other nodes while it is

moved towards the root. This type of pruning most of the times has insignificant effect on

decision tree models.

Table 1. J48 parameter values

Binary Splits No

Confidence Factor 0.25

Minimum Instances per Leaf 2

Reduced Error Pruning No

Subtree raising Yes

Pruned Yes

Laplace smoothing No

Sequential Minimal Optimization or SMO [17] is an ameliorated algorithm for training

support vector machines. SMO cuts in pieces a large quadratic programming optimization

problem converting it into smaller problems (sub-problems of quadratic programming).

1 http://www.cs.waikato.ac.nz/ml/weka/

The sub-problems are solved quickly because they are solved analytically which means

that SMO avoids to use extra time for arithmetical quadratic programming optimization as

an inner loop. So SMO manages to reduce computation time significantly.

Table 2. SMO parameter values

Complexity parameter 1.0

Round-off error 1.0E-12

Filter Type Normalize training data

Kernel PolyKernel

Random seed for cross validation 1

Tolerance parameter 0.001

Naïve Bayes [15] is a probabilistic classifier based on the assumption of conditional in-

dependence [18], which assumes that the appearance of a specific feature given the class

value is unrelated to the appearance of any other feature in the dataset. Though not valid in

reality, this assumption has been proven to cope well with several classification problems.

Additionally, this algorithm needs a small amount of training data to determine the parame-

ters necessary for classification. Due to the hypothesis of independent variables; there is no

need to estimate the entire covariance matrix but only the differentiations of the variables

for each class.

Table 3. Naive Bayes parameter values

Use kernel estimator No

Use supervised discretization No

The RandomForest [19] is a meta-learning classification algorithm that runs iteratively.

In each iteration a decision tree is induced from a randomly selected subset of the features.

The number of iterations is pre-defined. The final classification error is the mean error over

all iterations.

Table 4. RandomForest parameter values

Maximum Depth Unlimited

Number of Attributes 0

Number of trees to be generated 100

Seed 1

AdaBoost [20] is another meta-learning algorithm, that iteratively changes instance

weights, based on whether they were classified correctly (or not) in a previous iteration.

Thereby, the learner is forced to focus on instances that are hard to classify. The final clas-

sification is derived from the weighting of the models induced after every iteration.

Table 5. AdaBoost parameter values

Classifier SMO

Number of Iterations 10

Seed 1

Use resampling No

Weight Threshold 100

The IBk algorithm [15] is an alternate version of the k-nearest neighbor algorithm. Using

the Euclidean distance as a distance metric, it identifes the k training examples that are

closest to a given test instance, and, via majority voting selects its class label. The value of

k can be explicitly pre-defined, or estimated optimally using cross validation. In our exper-

iments, the number of nearest neighbors ranged from 1 to 33 neighbors, where only odd

values were selected.

Table 6. IBk parameter values

Cross Validate No

Distance Weighting No

Use of Mean Squared Error No

Nearest Neighbor Search Algorithm LinearNNSearch

Window Size 0

The Multilayer Perceptron is an artificial neural network [21], where each of the multi-

ple layers of nodes is fully connected to the following one. Multilayer perceptrons are able

to distinguish data that are not linearly separable. Experiments were conducted for one

hidden layer with the number of nodes ranging from 1 to 10.

Table 7. Multilayer Perceptron parameter values

Decrease learning rate No

Hidden layers 1

Learning rate 0.3

Momentum 0.2

Nominal to binary filter Yes

Normalize attributes Yes

Normalize numeric class Yes

Reset Yes

Seed 0

Training time 500

Validation set size 0

Validation threshold 20

4 Experimental Process

184 training instances were supplied. Due to the small size of the training data, no test set

could be supplied for the validation of the results. Therefore the 10-fold cross-validation

method was used. Τhe original sample is randomly partitioned into ten subsamples. One

out of ten subsamples is kept as validation data for testing the model, and the remaining

nine subsamples are used as training data. The cross-validation process is then repeated ten

times, with each of the ten subsamples being used only once as validation data. Results are

averaged across the ten experiments.

5 Evaluation

Figure 1 displays the classification results of the five aforementioned machine learning

algorithms. The SMO algorithm produces the best results in both precision and recall, with

the J48 algorithm being close by. AdaBoostM1 produces the same results with SMO using

as a base learner the SMO algorithm. On the other hand, NaiveBayes produces the worst

results in comparison with the other algorithms, with a significant decrease in precision and

a quite noteworthy low recall.

Fig. 1. Precision and recall comparison for five classification algorithms

Figure 2 presents the pruned tree constructed by the J48 algorithm. It is clear that the algo-

rithm considers the “previous reading” as the most important attribute for classification.

With the minimum temperature of day 3 being used when the previous reading has a value

of “5 to 6”.

Fig. 2. Tree view constructed by J48

The next experiment is using the IBk algorithm, as shown in Figure 3, with maximum re-

call for one and for five nearest neighbors. The best results in both recall and precision are

achieved when using one nearest neighbor. From three nearest neighbors and onwards the

precision of the algorithm decreases, with a significant drop after nine nearest neighbors.

After eleven nearest neighbors, precision and recall stay stable.

Fig. 3. IBk classification results for different number of k neighbours

Finally, the Multilayer Perceptron algorithm, shown in Figure 4, exhibits a great difference

between recall and precision values for any number of nodes in the perceptron. The best

results for both precision and recall are reported for three nodes in the hidden layer.

Fig. 4. Multilayer Perceptron classification results for different number of nodes

Comparing all machine learning algorithms that were used in the experiments, the best

performance was achieved by SMO and AdaBoostM1, using SMO as a base learner.

It is important to note that the values of the classification attribute are not balanced. Fig-

ure 5 depicts the distribution of the three values among the 184 instances. Over 80% of the

instances have a value of “0 to 4”, while the value “5 to 6” is the least encountered value,

with nine instances. This fact explains why the J48 algorithm, as shown by the constructed

tree in Figure 2, can't classify any instance to the value “5 to 6”.

Fig. 5. Value distribution of the “next trap reading” classification attribute

Figure 6 shows the comparison of the best classifier presented herein against the best clas-

sifier of [13] in terms of recall. It is obvious that the Classification Trees (CT) have a far

better recall compared to the SMO algorithm by almost 10%. This difference is attributed

to the significant imbalance in the distribution of the class value in the training data. Addi-

tionally, the results produced by the CT were achieved using only six attributes and the

classification class had only two values, whether to treat or not. Finally, a number of the

used attributes contained information about the phenological state of the olive tree.

Fig. 6. Results comparison with previous work [13]

6 Conclusion

In this work, supervised machine learning is used to predict future olive fruit fly trap’s

measurements. The proposed feature vector consists of environmental parameters, specifi-

cally temperature, and information about previous trap measurements. Results produced by

the conducted experiments were promising with the support vector machine algorithm

providing the best classification results, although the values of the classification attribute

were unbalanced.

Our approach differentiates from previous work by using environmental parameters in-

stead of information about the health of the olive trees. When results between the best clas-

sifiers of the proposed and existing work were compared, the proposed approach produced

results with 10% ameliorated recall.

Future research will take into account more environmental parameters such as relative

humidity and the amount of light the olive fruit flies are exposed to. Furthermore, the ex-

periments described are planed to be conducted again in more training instances as meas-

urement data accumulate.

Acknowledgments. Financial support of the European Union and of National Funds of

Greece and Albania under the IPA Cross-Border PROGRAMME "Greece - Albania 2007 -

2013", project title “Enhancing Olive Oil Production with the use of Innovative ICT” with

the acronym “e-Olive”, is gratefully acknowledged.

7 Bibliography

 Vossen, P., Varel, L., Devarenne A.: Olive fruit fly. University of California Cooperative Exten-

sion - Sonoma County (2006).

 Rice, R.: Bionomics of the Olive Fruit Fly Bactrocera (Dacus) olea. University of California

Plant Protection Quarterly, 10, 1-5, (2000)Fletcher, B.S.: Temperature development rate rela-

tionships of the immature stages and adults of tephritid fruit flies. In: Robinson, A. S., Hooper

G. (eds) Fruit Flies: Their Biology, Natural Enemies and Control, vol. 3A, pp. 273–89. Elsevier,

Amsterdam (1989).

4. Yokoyama, V. Y., Rendon P., Sivinski, J.: Biological Control of Olive Fruit Fly (Diptera: Teph-

ritidae) by Reseases of Psyttalia cf. concolor (Hymenoptera: Braconidae) in California, Parasi-

toid Longevity in Presence of the Host, and Host Status of Walnut Husk Fly. In: 7th International

Symposium on Fruit Flies of Economic Importance, pp.157-164. Salvador, Brazil (2006)

5. Broufas, G. D., Pappas, M. L., Koveos, D. S.: Effect of Relative Humidity on Longevity, Ovari-

an Maturation, and Egg Production in the Olive Fruit Fly (Diptera: Tephritidae). Annals of the

Entomological Society of America, 102(1), 70-75 (2009)

6. Patsias, A., 2005, EE Katapolmeesee tou THkou tee Elee [The Fighting of Olive fruit fly]. Pub-

licity Department of Agricultural Sector Applications and Publicity. Nicosia, Cyprus

7. Kubat, M., Holte, R. C., Matwin S.: Machine Learning for the Detection of Oil Spills in Satellite

Radar Images. Machine Learning, 30, 195–215 (1998)

8. Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J. Aide T. M.:

Automated classification of bird and amphibian calls using machine learning: A comparison of

methods. Ecological Informatics, 4, 206-214, (2009)

9. Pyayt, A. L., Mokhov, I. I., Lang, B., Krzhizhanovskaya, V. V., Meijer, R. J.: Machine Learning

Methods for Environmental Monitoring and Flood Protection. World Academy of Science, En-

gineering and Technology, 78, 118–124, (2011)

10. McQueen, R. J., Garner, S. R., Nevill-Manning, C. G., Witten, I. H.: Applying machine learning

to agricultural data. Computers and Electronics in Agriculture, 12(4), 275–293, (1995)

11. Ahmad, S., Kalra, A., Stephen, H.: Estimating Soil Moisture using Remote Sensing Data: A Ma-

chine Learning Approach,.Advances in Water Resources, 33(1), 69–80, 2010

12. Mitchell, R. S., Sherlock, R. A., Smith, L. A.: An investigation into the use of machine

learning for determining oestrus in cows. Computers and Electronics in Agriculture,

15(3), 195–213, (1996)

13. Del Sagrado, J., Del Águila, I. M.: Olive Fly Infestation Prediction Using Machine Learning

Techniques. In: Current Topics in Artificial Intelligence: 12th Conference of the Spanish Asso-

ciation for Artificial Intelligence, pp. 229-238, Springer Berlin Heidelberg (2007)

14. Vossen, P., 2014, Monitoring and Control of Olive Fruit Fly (OLF) for Olive Production in Cali-

fornia. University of California Cooperative Extension.

15. Witten, I. H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Sec-

ond edition. Morgan Kaufmann (2005)

16. Quinlan, J. R.: Bagging, boosting and C4.5. In: 13th National Conference on Artificial Intelli-

gence, pp. 725-730. AAAI Press, Portland, Oregon (1996)

17. Platt, J. C., Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector

Machines. Technical Report MSR-TR-98-14, Microsoft Research (1998)

18. Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach. 3rd edition, Prentice

Hall (2009)

19. Breiman L.: Random Forests. Machine Learning, 45, 5–32 (2001).

20. Freund, Y., Schapire, R. E.: Experiments with a new Boosting Algorithm. In: Proceedings of the

Thirteenth International Conference on Machine Learning, pp. 148-156, (1996).

21. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.

